FEBS 25042 FEBS Letters 501 (2001) 79–83

Apaf-1 localization is modulated indirectly by Bcl-2 expression

Antonio Ruiz-Vela*, J.P. Albar, Carlos Martínez-A

Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, E-28049 Madrid, Spain

Received 6 June 2001; accepted 6 June 2001

First published online 29 June 2001

Edited by Veli-Pekka Lehto

Abstract Apoptotic protease activating factor-1 (Apaf-1) is an adaptor molecule essential for caspase-9 activation. Subcellular analysis of Apaf-1 in NIH-3T3 fibroblasts and the immature murine B cell lymphoma WEHI-231 indicates that Apaf-1 is localized in the Golgi apparatus and cytoplasm. Bcl-2 overexpression in WEHI-231 cells disrupts Apaf-1 localization in Golgi, causing a perinuclear Apaf-1 redistribution. Bcl-2 overexpression in NIH-3T3 fibroblasts however does not cause similar Apaf-1 redistribution, suggesting that cell type factors are involved in the redistribution process. The ability of Bcl-2 to modify Apaf-1 subcellular localization is not explained by direct interaction between Apaf-1 and Bcl-2. These data may help to clarify the anti-apoptotic Bcl-2 function. © 2001 Federation of European Biochemical Societies. Published by Elsevier Science B.V. All rights reserved.

Key words: B lymphocyte; Apoptosis; Subcellular localization; Bcl-2; Cytochrome *c*; Apaf-1

1. Introduction

The caspases (cysteinyl aspartate-specific proteinases) are essential components in apoptosis [1], as confirmed by the profound defects in apoptosis observed in several caspase knock-out mice. Specifically, cells from caspase-3 or caspase-9 null mutant mice are resistant to apoptosis induced by a variety of signals [2]. Specific cofactor molecules are nonetheless essential for caspase activation in apoptosis [3]. One of these adaptors, Apaf-1 (apoptotic protease activating factor-1), binds caspase-9 via the caspase recruitment domain at its NH₂-terminus, initiating the formation of a supramolecular complex [4,5]. In vitro oligomerization between Apaf-1 and caspase-9 occurs in the presence of cytochrome c and dATP, leading to caspase-9 activation and subsequent proteolytic activation of caspase-3 [4]. The apoptotic process triggered by this initiation complex is negatively regulated by the anti-apoptotic Bcl-2 family members. The mechanism used by the anti-apoptotic Bcl-2 family proteins is to block release of proteins normally confined to the mitochondria, including cytochrome c [6]. Nonetheless, Bcl-2 is found not only in mitochondria, but is also localized around the nuclear envelope as well as in the endoplasmic reticulum (ER) [7–11], suggesting

*Corresponding author. Fax: (34)-91-372 0493.

E-mail: aruiz@cnb.uam.es

Abbreviations: Apaf-1, apoptotic protease activating factor-1; β -COP, β -coat protein; FCS, fetal calf serum; PDI, protein disulfide isomerase

the existence of additional Bcl-2 functions. In fact, it has been demonstrated that Bcl-2 decreases the free Ca²⁺ concentration within the ER lumen by increasing the Ca²⁺ permeability of the ER membrane [12]. Moreover, Bcl-2 expression increases Ca²⁺ leakage in the ER, thus triggering alterations in the homeostasis of the Golgi apparatus [13].

In the nematode *Caenorhabditis elegans*, one of these additional functions has been characterized for CED-9 (the Bcl-2 homologue); when overexpressed, this molecule sequesters CED-4 (the Apaf-1 homologue) in insoluble subcellular fractions [14]. In mammalian cells, however, no similar function has been identified. Here we report that Bcl-2 regulates the subcellular localization of Apaf-1, illustrated using WEHI-231 and CEM-C7-H.2 lymphocytes as models. We observed that Apaf-1 is localized in Golgi in lymphocytes that do not express Bcl-2, whereas lymphocytes overexpressing Bcl-2 show perinuclear Apaf-1 localization. Taken together, these data indicate a new Bcl-2 function in mammalian cells that appears similar to that observed for CED-9 in *C. elegans*.

2. Materials and methods

2.1. Cell culture

Wild type WEHI-231 and WEHI-231 cells expressing human Bcl-2 (hBcl-2) [15] were cultured in RPMI 1640 medium (BioWhittaker, Walkersville, MD, USA) supplemented with 10% heat-inactivated fetal calf serum (FCS), 2 mM L-glutamine, 100 U/ml penicillin, 100 μ g/ml streptomycin, 10 mM HEPES and 50 μ M 2-mercaptoethanol (Sigma, St. Louis, MO, USA). NIH-3T3 fibroblasts were cultured in Dulbecco's modified Eagle medium supplemented with 10% FCS and antibiotics as above; both were maintained at 37°C in a humidified 5% CO₂ atmosphere.

2.2. Production and characterization of polyclonal antibodies

Polyclonal anti-Apaf-1 antibody was generated in outbred New Zealand rabbits using a peptide corresponding to the CED-4 domain. The peptide, covering the human APAF-1 sequence 454-469 (QRYHQPHTLSPDQEDC), was synthesized using solid-phase procedure and standard Fmoc chemistry; a C-terminal Cys was included for coupling purposes. The peptide was purified in reverse-phase high performance liquid chromatography (HPLC); purity and composition were confirmed by reverse-phase HPLC and amino acid analysis. For immunization, the peptide was coupled to keyhole limpet hemocyanin (Pierce, Rockford, IL, USA) via the C-terminal Cys. Purified IgG was used for affinity purification. Antibody specificity was confirmed by immunofluorescence in COS cells (Fig. 2), which do no express Apaf-1 protein [16].

2.3. Antibodies and reagents

Antibodies against hBcl-2 (clone 6C8) and mouse Bcl-2 (clone 3F11) were purchased from Pharmingen (San Diego, CA, USA). Anti-protein disulfide isomerase (PDI) antibody (clone 1D3) was purchased from Stressgen (Victoria, BC, Canada). Texas red-conjugated wheat germ agglutinin was purchased from Molecular Probes (Eugene, OR, USA). Anti-β-coat protein (β-COP; clone M3A51) was

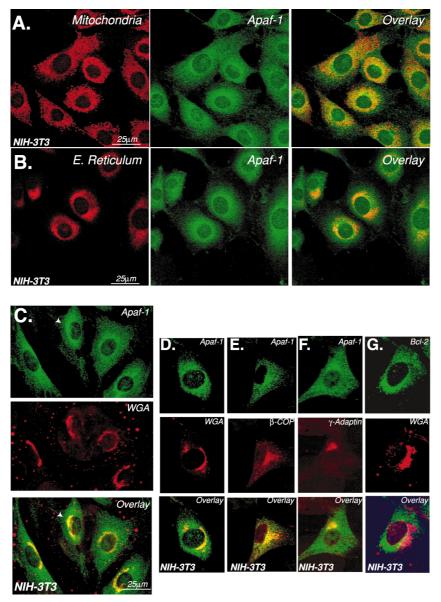


Fig. 1.

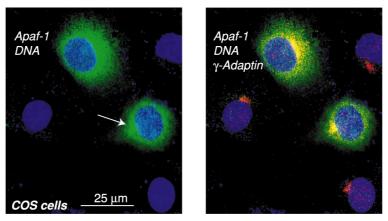


Fig. 2.

Fig. 1. Apaf-1 localization in NIH-3T3 fibroblasts. A: Immunofluorescence analysis for Apaf-1 and mitochondria. Cells were treated as described (Section 2). NIH-3T3 fibroblasts were incubated with rabbit anti-Apaf-1 (green fluorescence) and human anti-mitochondrial antibody (red). After incubation, samples were washed, then incubated with Cy2-conjugated anti-rabbit and Cy3-anti-human secondary antibodies. B: Immunofluorescence analysis for Apaf-1 and ER. NIH-3T3 fibroblasts were incubated with rabbit anti-Apaf-1 (green) and anti-PDI antibody (red). After incubation, samples were washed, then incubated with Cy2-conjugated anti-rabbit and Cy3-anti-mouse secondary antibodies. C: Immunofluorescence analysis for Apaf-1 and Golgi. Cells were incubated with anti-Apaf-1 (green) and Texas red-conjugated wheat germ agglutinin (WGA); Cy2-conjugated anti-rabbit antibody was used as second antibody. D: Detail of an NIH-3T3 fibroblast stained for Apaf-1 (green) and Golgi (WGA, red). E: NIH-3T3 fibroblast stained for Apaf-1 (green) and Golgi (β-COP, red); Cy2-anti-rabbit antibody and Cy3-anti-mouse were used as second antibodies. F: NIH-3T3 fibroblast stained for Apaf-1 (green) and Golgi (γ-adaptin, red); Cy2-anti-rabbit antibody and Cy3-anti-mouse were used as second antibody. G: NIH-3T3 fibroblast stained for Bcl-2 using anti-mouse Bcl-2 (clone 3F11, green) and Golgi (WGA, red); Cy2-anti-rabbit antibody was used as second antibody. The TCS-NT Leica confocal imaging system was used, equipped with a 63×1.4 oil PLAPO objective. Cy2 was analyzed at 488 nm and Cy3/Texas red at 568 nm. Images for each channel were captured separately and assembled into a single file with TCSMERGE software prior to analysis. Confocal images were analyzed using the Leica Vista+ (Beta Release 2) program. Images were processed digitally with Adobe Photoshop (Adobe Systems). The data are representative of the total cell population.

from Sigma. Anti- γ -adaptin was purchased from Transduction (Lexington, KY, USA).

2.4. Immunofluorescence and image acquisition

For immunofluorescence, cells were cultured in chamber slides, washed in phosphate-buffered saline (PBS), fixed in 4% paraformaldehyde (15 min, room temperature), pre-incubated in 2% bovine serum albumin (BSA), and incubated for 1 h with primary antibody in PBS containing 0.5% BSA and 0.1% Triton X-100. Cells were washed three times in the same buffer and incubated for 1 h with Cy2- or Cy3conjugated secondary antibodies (Jackson ImmunoResearch, West Grove, PA, USA). After washing, samples were incubated with TOP-RO-3 (Molecular Probes) in PBS for DNA staining. Serial Z-sections were obtained using an Ar-Kr laser and a TCS-NT Leica confocal imaging system equipped with a 63×1.4 oil PLAPO objective. Cy2 was analyzed at 488 nm, Cy3 at 568 nm, and TOPRO-3 at 647 nm. Images for each channel were captured separately and assembled into a single file with TCSMERGE software (Leica Microsystems, Heidelberg, Germany) prior to analysis. All confocal images were analyzed using the Leica Vista+ (Beta Release 2) program. Images were processed digitally using Adobe Photoshop (Adobe Systems, Inc.). All the images in the figures represent single sections.

3. Results

CED-9 is the Bcl-2 homologue in the nematode *C. elegans*; when overexpressed, this molecule sequesters CED-4 (the Apaf-1 homologue) in insoluble subcellular fractions [14]. We analyzed Bcl-2 and Apaf-1 localization to study whether Bcl-2 has a similar function in mammalian cells. The cytosolic localization of Apaf-1 has recently been described [16]. To extend the study of Apaf-1 compartmentalization, Apaf-1 subcellular localization was examined by confocal analysis in NIH-3T3 fibroblasts. We analyzed Apaf-1 co-localization with the pyruvate dehydrogenase complex in mitochondria [17], and PDI protein in ER [18], which indicated that Apaf-1 did not co-localize in mitochondria or ER (Fig. 1A,B), confirming previous studies [16]. In contrast, co-localization analysis with distinct Golgi markers showed Apaf-1 in the Golgi apparatus (Fig. 1C-F). This observation was validated by co-localization with (1) wheat germ agglutinin, which binds saccharide moieties in Golgi [19] (Fig. 1C,D), (2) β-COP protein, which is found in Golgi and Golgi-derived (nonclathrin) coated vesicles (Fig. 1E) [20], and (3) γ-adaptin protein in the cytoplasmic face of Golgi and Golgi clathrincoated vesicles (Fig. 1F) [21]. As a negative control, we analyzed endogenous Bcl-2 in the Golgi apparatus (Fig. 1G). This indicates that, in addition to its cytosolic localization, Apaf-1 is also found in Golgi.

To confirm the immunofluorescence analysis, we overexpressed Apaf-1 in COS cells, which lack the Apaf-1 protein [16]. Apaf-1 overexpression was detected in these cells and clearly expressed in cytoplasm and Golgi in the transfected cells, compared to complete lack of expression in non-transfected COS cells (Fig. 2). These results confirm the antibody specificity, and reinforce the Apaf-1 localization in Golgi in NIH-3T3 cells.

When overexpressed, CED-9 disrupts CED-4 localization in *C. elegans* [14]. To study whether Bcl-2 alters Apaf-1 localization in mammalian cells, we analyzed subcellular Apaf-1 distribution in the immature murine B cell lymphoma WEHI-231 (WEHI-231/wt), as well as in stable WEHI-231 transfectants expressing hBcl-2 (WEHI-231/hBcl-2), which are resistant to apoptosis [15]. In WEHI-231/wt cells, Apaf-1 staining shows a marked structure (Fig. 3A), whereas it surrounds DNA in WEHI-231/hBcl-2 cells, acquiring a perinuclear localization (Fig. 3B). In NIH-3T3 fibroblasts, however, no similar Apaf-1 redistribution is detected when Bcl-2 is overexpressed (Fig. 3C). These results indicate that Bcl-2 strongly disrupts Apaf-1 localization in WEHI-231, but not in NIH-3T3 cells.

To examine the mechanism of Bcl-2-induced Apaf-1 redistribution, we studied Apaf-1 localization in the Golgi apparatus. Apaf-1 clearly localized in Golgi in WEHI-231/wt cells (Fig. 4A), whereas Apaf-1 disappears from Golgi in stable WEHI-231/hBcl-2 transfectants (Fig. 4B). Furthermore, analysis of Apaf-1 and mitochondria indicated that Apaf-1 was not found in mitochondria in either cell type (Fig. 4C,D). Apaf-1 redistribution cannot be explained by interaction between Bcl-2 and Apaf-1, since they did not co-localize in immunofluorescence microscopy (Fig. 4E). The data also indicate that Apaf-1 does not redistribute from Golgi to mitochondria or ER (not shown), where Bcl-2 is localized [7–11], but rather redistributes to the perinuclear space.

Fig. 2. Apaf-1 overexpression in COS cells. COS cells were transiently transfected with a clone of Apaf-1 (17) using FuGene 6 (Roche) according to the manufacturer's instructions. At 24 h after transfection, cells were fixed; immunofluorescence analysis was performed (Section 2) to detect Apaf-1 (K-530 antibody, green), Golgi (γ-adaptin, red) and DNA (TOPRO-3, blue). Cy2-anti-rabbit antibody and Cy3-anti-mouse were used as secondary antibodies.

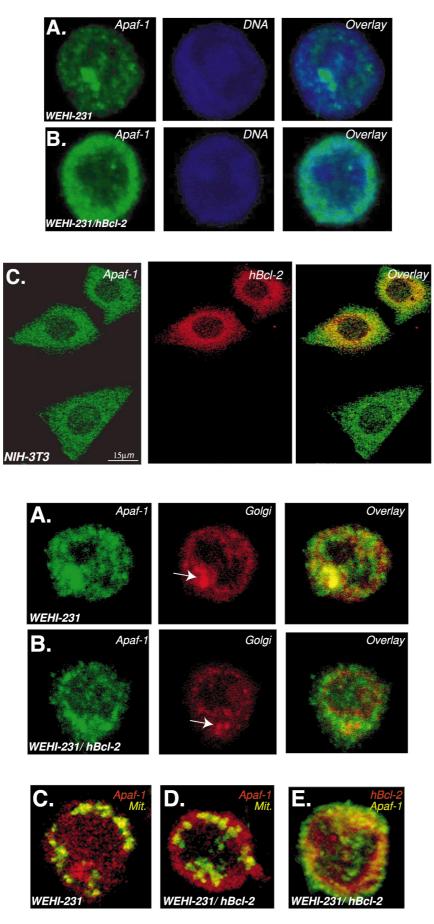


Fig. 3. Apaf-1 localization in WEHI-231/wt and WEHI-231/hBcl-2 cells. A: Immunofluorescence for Apaf-1 and DNA in WEHI-231/wt cells. Immunofluorescence for Apaf-1 (green) using anti-Apaf-1 (K-530) and DNA staining (blue) using TOPRO-3. A detailed image of a cell is shown. B: Immunofluorescence for Apaf-1 and DNA in WEHI-231/hBcl-2 cells. Immunofluorescence for Apaf-1 (green) and DNA staining (blue). A detailed image is shown. C: Bcl-2 overexpression in NIH-3T3 fibroblasts. Cells were transduced with a plasmid containing hBcl-2, produced by cloning a retroviral vector (pCL-Bcl2-Neo) containing hBcl-2 cDNA into the *EcoRI* site of the pCLXSN retroviral plasmid. Retroviral production was carried out by transient transfection of 293T cells. For viral transduction, 10⁵ NIH-3T3 fibroblasts were incubated overnight with 5 µg/ml of protamine sulfate (Sigma) in 1 ml of retroviral supernatant or alternatively, in virus-free medium. Infection was performed at 37°C and repeated 24 h later under the same conditions. Transduced NIH-3T3 fibroblasts were treated, washed, fixed, pre-incubated in BSA, and incubated with hamster anti-hBcl-2 (clone 6C8) and anti-Apaf-1 antibodies. After incubation, cells were washed and incubated with Cy3-anti-hamster and Cy2-anti-rabbit secondary antibodies. After washing, optical sections were obtained. The data are representative of the total cell population.

4. Discussion

Here we show that Apaf-1 subcellular localization is cell type-dependent and modified by Bcl-2 overexpression. In immunofluorescence microscopy, we show that Bcl-2 induces Apaf-1 redistribution from Golgi apparatus to perinuclear compartments. This effect of Apaf-1 re-localization is not due to interaction between Apaf-1 and Bcl-2. A recent study demonstrates that Apaf-1 does not interact with any Bcl-2 family member [22]; this is supported by our immunofluorescence analysis and yeast two-hybrid system experiments (not shown). This suggests that Bcl-2 triggers Apaf-1 sequestration indirectly, which may explain the cell type specificity of Apaf-1 compartmentalization.

On the other hand, Bcl-2 is found in mitochondria, nuclear envelope and ER [7–11]; in this last compartment, Bcl-2 decreases the free Ca²⁺ concentration within the ER lumen by increasing the Ca²⁺ permeability of the ER membrane [12]. This Bcl-2 function provokes an increase in Ca²⁺ leakage in the ER, triggering alterations in the homeostasis of the Golgi apparatus [13]. Alterations in the distribution of intracellular calcium thus can disturb the mechanism that segregates secretory from resident proteins in ER [23,24]. However, further studies are needed to determine whether the relationship demonstrated here between Apaf-1 and Bcl-2 has a role in in vivo apoptosis.

Acknowledgements: We would like to thank Drs. B.B. Wolf and D.R. Green for reagents and helpful discussions, Dr. G. Nuñez for the hBcl-2 cDNA clone, C. Mark for editorial assistance, and the technical staff of the department who aided with cell culture and material preparations. A.R.V. received a fellowship from the Ministerio de Educación y Cultura. This work was supported by grants from the Spanish Dirección General de Ciencia y Tecnología (DGCyT) and the Ministerio de Educación y Cultura. The Department of Immunology and Oncology was founded and is supported by the Spanish National Research Council (CSIC) and the Pharmacia Corporation.

References

 Alnemri, E.S., Livingston, D.J., Nicholson, D.W., Salvesen, G., Thornberry, N.A., Wong, W.W. and Yuan, J. (1996) Cell 87, 171.

- [2] Hakem, R., Hakem, A., Duncan, G.S., Henderson, J.T., Woo, M., Soengas, M.S., Elia, A., de la Pompa, J.L., Kagi, D., Khoo, W., Potter, J., Yoshida, R., Kaufman, S.A., Lowe, S.W., Penninger, J.M. and Mak, T.W. (1998) Cell 94, 339–352.
- [3] Yoshida, H., Kong, Y.Y., Yoshida, R., Elia, A.J., Hakem, A., Hakem, R., Penninger, J.M. and Mak, T.W. (1998) Cell 94, 739– 750
- [4] Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S.M., Ahmad, M., Alnemri, E.S. and Wang, X. (1997) Cell 91, 479–489.
- [5] Zou, H., Henzel, W.J., Liu, X., Lutschg, A. and Wang, X. (1997) Cell 90, 405–413.
- [6] Kroemer, G. and Reed, J.C. (2000) Nat. Med. 6, 513-519.
- [7] Chen-Levy, Z. and Cleary, M.L. (1990) J. Biol. Chem. 265, 4929–4933
- [8] Chen-Levy, Z., Nourse, J. and Cleary, M.L. (1989) Mol. Cell. Biol. 9, 701–710.
- [9] Monaghan, P., Robertson, D., Amos, T.A., Dyer, M.J., Mason, D.Y. and Greaves, M.F. (1992) J. Histochem. Cytochem. 40, 1819–1825.
- [10] Allsopp, T.E., Wyatt, S., Paterson, H.F. and Davies, A.M. (1993) Cell 73, 295–307.
- [11] Jacobson, M.D., Burne, J.F., King, M.P., Miyashita, T., Reed, J.C. and Raff, M.C. (1993) Nature 361, 365–369.
- [12] Foyouzi-Youssefi, R., Arnaudeau, S., Borner, C., Kelley, W.L., Tschopp, J., Lew, D.P., Demaurex, N. and Krause, K.H. (2000) Proc. Natl. Acad. Sci. USA 97, 5723–5728.
- [13] Pinton, P., Ferrari, D., Magalhaes, P., Schulze-Osthoff, K., Di Virgilio, F., Pozzan, T. and Rizzuto, R. (2000) J. Cell Biol. 148, 857–862.
- [14] Wu, D., Wallen, H.D. and Nuñez, G. (1997) Science 275, 1126– 1129.
- [15] Brás, A., Ruiz-Vela, A., González de Buitrago, G. and Martínez, A.C. (1999) FASEB J. 13, 931–944.
- [16] Hausmann, G., O'Reilly, L.A., van Driel, R., Beaumont, J.G., Strasser, A., Adams, J.M. and Huang, D.C. (2000) J. Cell Biol. 149, 623–634.
- [17] Clavería, C., Albar, J.P., Serrano, A., Buesa, J.M., Barbero, J.L. and Martínez-A, C. (1998) EMBO J. 17, 7199–7208.
- [18] Huovila, A.P., Eder, A.M. and Fuller, S.D. (1992) J. Cell Biol. 118, 1305–1320
- [19] Virtanen, I., Ekblom, P. and Laurila, P. (1980) J. Cell Biol. 85, 429–434.
- [20] Serafini, T., Stenbeck, G., Brecht, A., Lottspeich, F., Orci, L., Rothman, J.E. and Wieland, F.T. (1991) Nature 349, 215–220.
- [21] Robinson, M.S. (1990) J. Cell Biol., 2319-2326.
- [22] Moriishi, K., Huang, D.C., Cory, S. and Adams, J.M. (1999) Proc. Natl. Acad. Sci. USA 96, 9683–9688.
- [23] Sambrook, J.F. (1990) Cell 61, 197–199.
- [24] Booth, C. and Koch, G.L. (1989) Cell 59, 729-737.

Fig. 4. Apaf-1 localization in Golgi in WEHI-231/wt. A: Immunofluorescence for Apaf-1 and Golgi. Apaf-1 (green) and Golgi stained with Texas red-conjugated wheat germ agglutinin (red). A detail of a WEHI-231/wt cell is shown. B: Immunofluorescence for Apaf-1 and Golgi in WEHI-231/hBcl-2 cells. The arrow indicates the Golgi apparatus. Immunofluorescence for Apaf-1 (red) and mitochondria (green) in WEHI-231/wt (C), for Apaf-1 (red) and mitochondria (green) in WEHI-231/hBcl-2 cells (D), and for Apaf-1 (green) and hBcl-2 (red) in WEHI-231/hBcl-2 cells (E). All samples were treated as described (Section 2). Images are representative of the entire population analyzed.